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Abstract

Transformer-based models have recently advanced long sequence time-series fore-
casting (LSTF) in finance. However, they remain constrained by the quadratic
self-attention complexity, memory bottlenecks, slow generation speed, and limited
capacity for modeling long sequence dependencies. Existing solutions alleviate
these issues only partially and often rely on restrictive assumptions. To address
these limitations, we propose Sparseformer, an encoder-decoder based tranformer
architecture that preserves O(LlogL) computational efficiency of similar models
(such as Informer, etc.) while introducing a sparsity-enhanced attention mechanism
to expand the effective receptive field (ERF). This design enables more accurate
long-range dependency modeling without large patch sizes. The model provides a
scalable and robust framework for long sequence time-series forecasting.

1 Introduction

Time series forecasting is widely used in real-world applications, such as transportation management,
economic planning, energy planning, and weather forecasting, etc. Because of the immense practical
value, time series forecasting has received great attention and has grown tremendously in recent years
[Wen et al., 2023, Lim and Zohren, 2021a, Miller et al., 2024, Benidis et al., 2022, Mahmoud and
Mohammed, 2020, Masini et al., 2023]. In particular, earlier machine learning models like SVM can
make much better predictions with less effort [Tay and Cao, 2001].

However, things underwent a profound transformation after the Transformer [Vaswani et al., 2023]
architecture was introduced. Benefiting from its affention mechanism [Ji et al., 2019], the Transformer
architecture is quite suitable for modeling long-range dependency in financial markets and capture
the relationship between multiple variables. Thus, based on the increasing data availability and
computing power in recent times, machine learning, specifically Transformer-based models, has
become a vital part of the next generation of time series forecasting models [Lim and Zohren, 2021b].
Yongchareon [Yongchareon, 2025] has demonstrated that Transformer variants—such as Informer
[Zhou et al., 2021], Autoformer [Wu et al., 2022], and PatchTST [Nie et al., 2023]—consistently
outperform classical models not only on conventional statistical metrics such as mean squared
error (MSE) and mean absolute error (MAE), but also in simulation-based evaluations that better
reflect real-world financial performance. When integrated into trading strategies, these models
perform higher returns, improved Sharpe ratios, and reduced maximum draw-downs, indicating
superior robustness and adaptability under volatile market conditions. Such evidence suggests that
attention-based architectures provide an excellent framework for predictive modeling and portfolio
optimization, among other financial applications.
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However, since the the Transformer [Vaswani et al., 2023] architecture is designed for NLP and
although there are many similarities between NLP and LSTEF, significant limitations still exists when
using this architecture on LSTF:

1. The quadratic computation of self-attention. When calculating the output for the attention
layer, the time complexity for step softmax (Q—\I/(;) V is O(L?) when L >> d. When solving LSTF

problems, the model always faces a relatively long input time series compared to NLP problems.
Thus, it requires significantly more computation when switching to LSTF problems, which slows
down the decoding speed and increases memory usage. Former models focused on decreasing the
time complexity. For instance, Sparse Transformer [Child et al., 2019], LogSparse Transformer [Li
et al., 2020], and Longformer [Beltagy et al., 2020] all achieved O(LlogL) self-attention complexity.
However, their efficiency gain, measured by memory savings and speedup of training and inference, is
limited due to the lack of an efficient algorithm for sparse matrix [Qiu et al., 2020]. Reformer [Kitaev
et al., 2020] also achieves the same time complexity with locally sensitive hashing self-attention, while
only works on extremely long sequences. Linformer [Wang et al., 2020] reduces the self-attention
time complexity from the quadratic O(L?) of the vanilla Transformer to a linear O(L) by projecting
the key and value matrices into a lower-dimensional space through learnable linear transformations.
This design relies on the empirical observation that the attention matrix is approximately low-rank,
allowing the model to compute attention in a compressed representation without significant loss of
information. However, in real-world long-sequence scenarios where attention patterns are complex
and the true attention matrix may not be low-rank, this assumption can break down. To maintain
accuracy, the projection dimension k& must increase , causing the computational and memory costs to
grow quadratically again, leading to a potential degradation of efficiency back to O(L?). Informer
[Zhou et al., 2021] further improves upon former works by introducing a ProbSparse self-attention
mechanism, which selects the most informative query-key pairs rather than computing attention over
all positions. This mechanism preserves only the dominant dependencies that contribute most to the
prediction. As a result, Informer not only maintains the O(LlogL) time and memory complexity
which is independent of the input, but also achieves better forecasting accuracy on LSTF problems.

2. The memory bottleneck in stacking layers for long inputs. Vanilla Transformer architecture
always stacks several encoder and decoder layers to enhance the model’s representation capability.
This procedure leads to a linear increase of total memory consumption with respect to the number of
layers .J, leading to an overall complexity of O(.J - L?).Such quadratic dependence on sequence length
L imposes a severe memory bottleneck when processing long time series inputs. Informer [Zhou
et al., 2021] provided a solution to this issue by self-attention distilling. The "distilling" procedure
forwards from j-th layer to (j 4- 1)-th layer is: X}, = MaxPool(ELU(Conld([X}]4p))), where
['] A represents the attention block. This operation applies a convolution followed by a non-linear
activation function and a pooling step that halves the sequence length at each layer, effectively reduce
the whole memory usage to O((2 — €) LlogL), enabling deep architectures to handle much longer
input sequences efficiently.

3. The speed plunge in predicting long outputs. When facing LSTF problems, vanilla Transformer
makes a step-by-step autoregressive decoding, which slows down the decoding speed since each future
point depends on the previously generated ones. This sequential dependency makes the inference
speed drop dramatically as the output length increases. Informer [Zhou et al., 2021] proposed a
generative inference to alleviate the speed plunge in long prediction. Technically, they feed the

decoder with the following vector as X7, = Concat(X{,;,,., X¢) € R(EtorentLy)Xdmoder ysing

a placeholder X} € RLtorenXdmodet 1o represent the target sequence. After two stacked attention
layers and a fully connected projection layer, the decoder simultaneously generates the entire output

sequence Y, € REv>dy_ This design removes the autoregressive dependency and transforms the
decoding process from O(L,) sequential steps to a single forward pass (O(1)), achieving substantial
acceleration for long-horizon forecasting.

4. The limited capacity of conventional Transformer architectures to model long-range depen-
dencies. According to [Kong et al., 2025], Transformer architecture relies on embedding mechanisms
to obtain positional relationships within sequences, but when processing long sequence inputs, it often
fails to adequately encode them and tends to lose long-term dependency items. Latest research like
PatchTST [Nie et al., 2023] focusing on using patching to capture long-term dependency. However,
the large size patching leads to a new problem: patched-based Transformers have to work with a very
long input length and a very large patch size to achieve ideal performance [Luo and Wang, 2024,



Zhou et al., 2021, 2022, Wu et al., 2022]. According to [Luo and Wang, 2024], the core problem
in LSTF lays in the limited Effective Receptive Field (ERF) of vanilla Transformer and patching is
a method to help the instruct attention to focus on core time steps. Based on this, they introduced
sparsity into the attention layer and introduced deformable attention [Luo and Wang, 2024] to help
model focusing on important time points, which does not rely on patching.

In this note, we intend to leverage the sparsity in the self-attention mechanism while retaining the
computational advantages of similar models (such as Informer), thereby enhancing the model’s ability
to capture long-range temporal dependencies and improving overall forecasting performance. To
accomplish this goal, we propose Sparseformer. Our contributions are as follows:

 Sparseformer is designed upon the classical encoder-decoder Transformer backbone, ensur-
ing that the overall computational complexity remains at O(LlogL) (at par with state of the
art transfomer models such as Informer, etc.) and the memory usage retains the efficient
O((2 — €)LlogL) scaling, with no sacrifice in inference speed.

* We incorporate a tailored sparsity mechanism into the attention module, which effectively
enlarges the model’s ERF and enables it to better identify informative time steps within long
sequences. This sparsity-enhanced attention improves the model’s capacity to model long-
term dependencies without relying on excessively large patch sizes or heavy architectural
modifications.

* We also introduce a novel Seasonal-Trend Decomposition scheme to enrich the input
representation of the time series.

2 Preliminary

Consider a dynamical system observed from time O through 7' at discrete time intervals. The
periodically recorded observations, will generate a sequence Xo, X, .. ,Xr. The time series
forecasting problem is to predict the most likely length- K sequence in the future given the previous
J observations (including the current one):

Xt+1a ) XHK = argmax P(X;41,..., Xk | thJJrlz Xt7J+2, LX),

2.1 Sequence to Sequence Forecasting Framework

In the rolling forecasting setting with a fixed size window, a t-th sequence input is a series of
vectors Xt = {x¢, ... ,xix : xt € R4} of L, elements and its target is the corresponding vectors

t={yl, ... ,ytLy : y! € R%}. In particular, Long Sequence Time-series Forecasting (LSTF)

problem aims to predict the target sequence )'* from the input sequence X'* and encourages a longer
output’s length L, than previous works.

Our proposed model Sparseformer follows the encoder-decoder mechanism and the overall archi-
tecture is given in Figure 1. Mostly, encoder-decoder models are devised to “encode” the input
representations X'* into hidden state representations H' = {h{, ..., htLh} and “decode” the output

representations (predictions) Yt from H.

2.2 Input Representation

Since the observations are recorded at fixed time intervals, the temporal order of points carries
essential structural information. To preserve this local context information, we incorporate a positional
encoding:

pos jeX]

PE(pos,2j) = sin(————57—),  PE(pos 2j41) = cos(———5—),
(2Lw)dvnodel (QL ) model
where j € 1,- -, [dmoder/2]. Each global timestamp is labeled by a learnable stamp embedding

SE(pos) With a limited vocabulary size, enabling the computation of self-attention regarding similarity
to have access to global context in an affordable manner. To align the dimensions, we project the
scalar context x! into u! € Rémedet with 1-D convolution filters. Thus, we have the feeding vector

KXoeapi) = oW + PEL 1)1 + Z[SELXX(t71)+i]pa
p



wherei € 1,--- | L,, and « (always set to 1) is the factor balancing the magnitude between the scalar
projection and local/global embeddings. We have also introduced a seasonal-trend decomposition to
enrich the input representation. The detailed formulation and preprocessing procedure are provided
in Appendix A.

2.3 Forecasting Objective

The model is trained to minimize a discrepancy between predicted values and ground truth, typically
using mean squared error:

1 <l 2
»C:K;HXtJrk_thLkH .

3 The Model and Methodology

3.1 Sparseformer: Structure Overview
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Figure 1: Structure Overview of Sparseformer

The raw time series and their associated timestamp features are first fed into the model. The numerical
sequence itself is treated as a multi-dimensional signal and mapped into a unified high-dimensional



representation space through a convolution layer. At the same time, each time-step’s position is
assigned a fixed sinusoidal positional encoding to provide relative positional information. In addition,
timestamp information is independently embedded into high-dimensional vectors. The numerical,
positional, and temporal embeddings are then summed to form a per-step representation, which serves
as the encoder input.

The encoder is composed of multiple layers, each containing two attention mechanisms and a feed-
forward network. The first mechanism is deformable attention: based on the input representation, the
model dynamically predicts a set of continuous sampling locations to construct the keys and values
for attention, while the original sequence positions act as queries. Each encoder layer also performs a
multi-head ProbSparce self-attention operation, which uses the entire sequence to calculate querys,
keys and values to capture global dependencies. Every attention operation is followed by residual
connections and layer normalization, ensuring stable information flow across layers. After stacking
multiple layers, the encoder output yields a multi-scale time-series representation that integrates both
local and global information.

The decoder follows a similar structure but is designed to generate future predictions. It first applies
the same three types of embeddings to the “known historical segment and placeholder positions for
future steps.” In each decoder layer, the model performs causally masked self-attention to ensure that
each future position can only access past information. This is followed by cross-attention, which
allows decoder representations to extract relevant information from the encoder output for conditional
generation, and then a feed-forward transformation. After passing through multiple decoder layers,
the output remains in a high-dimensional latent space. Finally, a linear projection maps these latent
vectors to real-valued predictions, and the model extracts the required number of forecast steps from
the end of the decoder sequence as the final output.

3.1.1 Input and Embedding

Given an input time series
X e RB X Lg% C’7

where B stands for Batch size, L, stands for the length of X, C stands for the number of variables
(Batch size is the number of time series we put into a model in one training step, and L, is the length
of the input. i.e. , L, is the "look back window", and B is how many look back window we have at
once.), and its associated timestamp features

M;E e RBXLdet’

where d; stands for the dimension of the input timestamps.
The model first constructs three types of embeddings:
Value embedding (Conv1D):

Ey = ConvID(X) € RP»FexP,
where D stands for the model’s dimension.

Positional embedding (sinusoidal):

EP° = PositionalEmbedding(L,) € R**L=*P,

Temporal embedding:

E'*™P = TemporalEmbedding(M,) € RE*L=xD,
The encoder input is the sum of the three embeddings:

H(O) — E:\E/al +E£05 _’_E;emp c RBwaxD.

3.1.2 Encoder

The encoder consists of L. layers, each containing a transformable sparse attention module, a
ProbSparse self-attention module, and a feed-forward network.



Reference Points T, Sampling Points T,

Mg

1 >
A Offsets AT

| Coordinate View

|

| Linear

| Interpolation|
VWV | -

- Sampled Series X

|

|

|

|

|

___O_____________

1 >

Tensor View Key & Value| 5 Depth-w.ise

» Projection § Output Conv?luilon’

Ql.ml}. - < Projection Strdee
Pro_lu‘tlo V—————— = )
CLLLLLD > Network K——» _{:‘I‘ T DxN
Input Feature Series X k= Q
=

Figure 2: Transformable Sparse Attention

Transformable Sparse Attention: Figure 2 introduces the detailed process of our Transformable
Sparse attention. For the (I)-th encoder layer, sampling locations are predicted by

P(l) _ fe(H(l_l)) c ]RBXLmXI(7

where fy stands for the offset network, H¢~1) stands for the hidden representation of { — 1-th layer
and K stands for the number of sampling points.

The sequence is sampled at continuous locations through interpolation:
X0 = Interp(H(l_l), P(l)) .
Queries, keys, and values are obtained as
Q=H"YWy, K=XUWg, V=XxOWw.
Transformable Sparse attention produces
Zr(rl%A = Attention(Q, K, V).
Residual connection and layer normalization yield
HO = LayerNorm (H(l_l) + ZP(FI%A) .
ProbSparse Self-Attention:
Q =0Yw,, K =0Ywj, Vv =HYW].
Using the ProbSparse top-u selection:
Z]()lr)ob = ProbSparseAttention(Q’, K', V").
Residual and normalization:

HO = LayerNorm (ﬁ(l) + Zé?ob) ’

Feed-forward network:
FO = o—(H(“W1 + b1> W + bs.

HO = LayerNorm(H(l) + F(l)> .

The final encoder output is
Henc — H(Le) E RBXL; ><D.



3.1.3 Decoder

The decoder is composed of L, stacked layers. Each layer consists of (1) a masked self-attention
module, (2) a cross-attention module, and (3) a position-wise feed-forward network (FFN). Given the
decoder input sequence

Y(O) c RBxLyxD

and the encoder output
BxL},xD
Heve ¢ RBxLyx ,

the computations of the ({)-th decoder layer are described below.

Masked Self-Attention: The decoder first applies masked self-attention:

(Y(lfl)WQ)(Y(lfl)WK)T
vD

sel

Z(l)f = softmax( + My) (v =Duy,),

0, J <,

where My [i, j] = is a causal mask preventing positions from attending to the future.
—00, J>1,
A residual connection and layer normalization are then applied:

Yo = LayerNorm(Y(l_l) + Zggf) :

Cross-Attention: For cross-attention, the query is projected from the decoder representation y®,
while the keys and values are projected from the encoder output H°"°:

Qe =YOW§, K.=H"™Wf, V.=H"Wy.
Then the cross-attention computation is given by:

KT
z0, = softmax(Q e M) V.,
v D

where Mg 1S the attention mask applied between the decoder queries and encoder memory. Again,
residual connection and normalization are applied:

YO = LayerNorm(f’(l) + z0 ) .

Cross

Feed-Forward Network: A feed-forward network further transforms the representation position-
wise:
FO = Dropout(cr (Y(I)W1 + b1)>W2 + ba,

where the activation o(-) can be ReLU or GELU, and Dropout randomly masks a portion of
activations during training to reduce overfitting:

Dropout(h) = h©®m, m; ~ Bernoulli(1 — p).

The final output of the layer is computed as:
y® = LayerNorm (Y(l) + F(l)) .
Decoder Output: After all L, layers, the final decoder representation is:

Hdec _ Y(Ld) c RBXLyXD'

4 Experiments

4.1 Datasets

We perform experiments on 3 datasets, including:



ETTh1 (Electricity Transformer Temperature): The dataset contains two years of measurements
collected from a county-level power grid in China. To examine the performance of the LSTF task,
we adopt the ETTh1 subset, which provides 1-hour-resolution data. Each time step includes the
target variable “oil temperature” together with six associated power-load features. The train/val/test
is 12/4/4 months.

WTH: This dataset contains local climatological data for nearly 1,600 U.S. locations, 4 years from
2010 to 2013, where data points are collected every 1 hour. Each data point consists of the target
value “wet bulb” and 11 climate features. The train/val/test is 28/10/10 months.

ECL (Electricity Consuming Load): The dataset records the electricity consumption (kWh) of 321
clients. The raw records were converted into an hourly consumption series spanning two years and
use “MT 320" as the prediction target. The train/val/test is 15/3/4 months.

4.2 Experimental Details

Baselines: We have selected 3 time-series forecasting methods as comparison, including Informer
[Zhou et al., 2021], Reformer [Kitaev et al., 2020], and DeepAR [Salinas et al., 2020].

Hyper-parameter Tuning: Following the configurations suggested in the Informer [Zhou et al.,
2021], we directly adopt their recommended hyperparameter configuration in our experiments. The
Informer model is implemented with a 3-layer encoder stack and an additional 1-layer distilling
stack (1/4 input), together with a 2-layer decoder. All proposed methods are trained using the Adam
optimizer, with the learning rate initialized at 1e~* and decaying two times smaller every epoch.
The training process runs for 8 epochs with early stopping, and all baseline methods are configured
according to the original recommendations. The batch size is fixed at 32.

Metrics: We use 2 evaluation metrics, including MSE = 2 3™ | (y—§)? and MAE = L 3™ |y —
| on each prediction window, and roll the whole set with stride = 1.

Platform: All the models were trained/tested on a single Nvidia RTX5070Ti 16GB GPU.
4.3 Results and Analysis

Table 1 summarizes the univariate evaluation results of all the methods on 3 datasets. The best results
are highlighted in boldface.

Table 1: Univariate LSTF results on 3 datasets (prediction length = 48)

Methods  Sparseformer Informer Reformer DeepAR
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETThl 059 056 073 065 276 272 524 519
WTH 032 037 039 043 048 047 1.13 1.13
ECL 024 035 055 058 1.52 1.54 392 383

From Table 1, it is evident that Sparseformer consistently outperforms the three baseline models
across all datasets. This demonstrates that the proposed Transformable Sparse Attention effectively
enlarges the ERF and consequently enhances predictive performance. Nevertheless, this conclusion
is preliminary, as it is derived from a limited set of experiments constrained by time. To strengthen
the reliability of our findings, we plan to evaluate the model under a broader range of hyperparameter
configurations and conduct comprehensive ablation studies in the future.
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A Seasonal-Trend Decomposition

In this appendix we describe the seasonal-trend decomposition used in our data preprocessing
pipeline.

A.1 STL-based decomposition

Let {x;}]_, denote a univariate time series obtained from the raw observations. For each dataset
we specify a fundamental seasonal period P according to the sampling frequency . We apply the
STL (Seasonal-Trend decomposition using Loess) procedure to decompose x; into three additive
components:

.’ITt:Tt+St+Rt, tzl,...7T,

where T} stands for trend, .S; stands for Seasonal, R; stands for residual.

A.2 Augmented input construction

Let z; € R denote the original scalar context at time ¢. After STL decomposition, we construct an
augmented feature vector
- T 4
Ty = [%&7 T;, St, Rt] € R%,
which explicitly exposes the trend, seasonal, and residual dynamics to the model. For the multivariate
setting, let v; € R™ be the original m-dimensional observation and let y; be the designated target
channel on which STL is applied. We then form

}T c Rm+3.

’Dt = [”U;r, n, St, Rt
To ensure numerical stability, feature-wise standardization is performed on the training split. Let
Lo, 04 denote the empirical mean and standard deviation of the augmented inputs over the training

interval, and let y,, 0, be the corresponding statistics for the prediction target. We apply the
transformations

t — ) Yt =
Oy Oy

3 Up — fl Aiyt*,uy’

for all ¢ in the training, validation, and test sets. The normalized inputs 0y are then projected into the
model dimension and combined with the positional and time-stamp embeddings as described in the
main text.
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